Abstract

We propose a new class of higher derivative scalar-tensor theories without the Ostrogradsky's ghost instabilities. The construction of our theory is originally motivated by a scalar field with spacelike gradient, which enables us to fix a gauge in which the scalar field appears to be non-dynamical. We dub such a gauge as the spatial gauge. Though the scalar field loses its dynamics, the spatial gauge fixing breaks the time diffeomorphism invariance and thus excites a scalar mode in the gravity sector. We generalize this idea and construct a general class of scalar-tensor theories through a non-dynamical scalar field, which preserves only spatial covariance. We perform a Hamiltonian analysis and confirm that there are at most three (two tensors and one scalar) dynamical degrees of freedom, which ensures the absence of a degree of freedom due to higher derivatives. Our construction opens a new branch of scalar-tensor theories with higher derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.