Abstract
In the late 1980s, Friedlander and Parshall studied the representations of a family of algebras which were obtained as deformations of the distribution algebra of the first Frobenius kernel of an algebraic group. The representation theory of these algebras tells us much about the representation theory of Lie algebras in positive characteristic. We develop an analogue of this family of algebras for the distribution algebras of the higher Frobenius kernels, answering a 30 year old question posed by Friedlander and Parshall. We also examine their representation theory in the case of the special linear group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.