Abstract

Let $p\geq 5$ be prime. For elliptic modular forms of weight 2 and level $\Gamma_0(N)$ where $N>6$ is squarefree, we bound the depth of Eisenstein congruences modulo $p$ (from below) by a generalized Bernoulli number with correction factors and show how this depth detects the local non-principality of the Eisenstein ideal. We then use admissibility results of Ribet and Yoo to give an infinite class of examples where the Eisenstein ideal is not locally principal. Lastly, we illustrate these results with explicit computations and give an interesting commutative algebra application related to Hilbert--Samuel multiplicities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.