Abstract
We consider a problem of calculating the loop space homology for so-called polyhedral products defined by an arbitrary simplicial complex K. A presentation of this homology algebra is obtained from the homology of the complements of diagonal subspace arrangements, which, in turn, is calculated using an infinite resolution of the exterior Stanley-Reisner algebra. We get an explicit presentation of the loop homology algebra for polyhedral products for classes of simplicial complexes such as flag complexes and the duals of sequentially Cohen-Macaulay complexes in terms of higher commutator products. We give a construction for the iteration of higher products and discuss the relationship between this problem and problems in commutative algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.