Abstract
Recently, G. Fløystad studied higher Cohen-Macaulay property of certain finite regular cell complexes. In this paper, we partially extend his results to squarefree modules, toric face rings, and simplicial posets. For example, we show that if (the corresponding cell complex of) a simplicial poset is l l -Cohen-Macaulay, then its codimension one skeleton is ( l + 1 ) (l+1) -Cohen-Macaulay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.