Abstract

Graphene nano-sheets such as graphene oxide, chemically converted graphene and pristine graphene [1-8] improve the capacity utilization of the positive active material of the lead acid battery. At 0.2C, graphene oxide in positive active material produces the best capacity (41% increase over the control), and improves the high-rate performance due to the higher reactivity at the graphene/active material interface. The in-situ changes in the graphene structure and oxygen states [1-2] support these, as well as higher adsorptive surface area, better graphene/lead dioxide interfacial reaction, and finer & highly utilized lead dioxide phases. The multi-scale physio-chemical mechanisms improving capacity and cycle life is thus: Electrolyte/ionic permeation improvements results from increase in pre-formation porosity, and higher interfacial reactivity at gel zone which enhances active material reversibility. Our ion transfer model reveals the optimized redox reaction in the electro-active zone of graphene-enhanced active materials. This work shows the best enhancement in the capacity of lead-acid battery positive electrode till date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.