Abstract

We previously reported that an interferon (IFN)-inducible protein, BST2, was regulated by the JAK-STAT pathway activated by CD40, and subsequently suppressing hepatitis B virus (HBV) repliaction and transcription. The current research attempted to assess the impact of BST2 on the IFN-treated anti-HBV effect, and explore BST2 variants for predicting pegylated IFN alpha (PegIFNα) therapy response of patients with hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB). Using an HBV-transfected cell model, the function of BST2 on HBV DNA replication and transcription driven by IFN was studied. The potentially functional BST2 variants were selected through a strategy of gene-wide screening. The associations of BST2 variants and polygenic score (PGS) model, which was used to quantify the combined influence of several genetic variants, with treatment response were examined in 2 separate PegIFNα-treated cohorts of 238 and 707 patients with CHB, respectively. We found that overexpression of BST2 improved the anti-HBV activity triggered by IFN-α. Among PegIFNα-treated patients with CHB, BST2_rs9576 was screened out to be significantly correlated with combined response (CR; i.e., HBeAg seroconversion along with HBV DNA level <3.3log10 IU/mL, P = 7.12 × 10-5 ). Additionally, there was a strong correlation between the PGS incorporating BST2_rs9576 and other 5 genetic variations (previously described predictors of therapy response to PegIFNα) and CR (P = 1.81 × 10-13 ), hepatitis B surface antigen (HBsAg) level (P = 0.004), as well as HBsAg decline (P = 0.017). In conclusion, higher BST2 expression responded better to IFN-α treatment. BST2_rs9576 is an effective indicator to forecast therapy response of PegIFNα-treated patients with CHB. The PGS possesses the potential to boost the ability of PegIFNα therapy response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call