Abstract

We explore quark matter in 4d quantum chromodynamics (QCD4), the μ-T (chemical potential-temperature) phase diagram, possible 't Hooft anomalies, and topological terms, via non-perturbative tools of cobordism theory and higher anomaly matching. We focus on quarks in 3-color and 3-flavor on bi-fundamentals of SU(3), then analyze the continuous and discrete global symmetries and pay careful attention to finite group sectors. We input constraints from T=CP or CT time-reversal symmetries, implementing QCD on unorientable spacetimes and distinct topology. Examined phases include the high T QGP (quark-gluon plasma/liquid), the low T ChSB (chiral symmetry breaking), 2SC (2-color superconductivity) and CFL (3-color-flavor locking superconductivity) at high density. We introduce a possibly useful but only approximate higher anomaly, involving discrete 0-form axial and 1-form mixed chiral-flavor-locked center symmetries, matched by the above four QCD phases. We also enlist as much as possible, but without identifying all of, 't Hooft anomalies and topological terms relevant to Symmetry Protected/Enriched Topological states (SPTs/SETs) of gauged SU(2) or SU(3) QCDd-like matter theories in general in any spacetime dimensions d=2,3,4,5 via cobordism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call