Abstract
We study the K-theory of actions of diagonalizable group schemes on noetherian regular separated algebraic spaces: our main result shows how to reconstruct the K-theory ring of such an action from the K-theory rings of the loci where the stabilizers have constant dimension. We apply this to the calculation of the equivariant K-theory of toric varieties, and give conditions under which the Merkurjev spectral sequence degenerates, so that the equivariant K-theory ring determines the ordinary K-theory ring. We also prove a very refined localization theorem for actions of this type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.