Abstract

We report the high energy radiography of dense material using MeV all-optical-driven inverse Compton x-ray source. The properties of the inverse-Compton x-ray source are controlled by means of electron energy, electron charge, scattering beam focal spot size and pulse duration to obtain optimized x-ray energy and high flux for dense material radiography. In this experiment, the x-ray has a photon energy of 8 MeV for maximal steel penetration depth, and a flux of 1011 x-ray photons per shot. With this novel x-ray source, we are able to demonstrate radiography of a 10 cm thick “kite” object through a steel shielding with thickness up to 40 cm in a single exposure. The radiography image of the “kite” object though the 40 cm steel has signal to noise ratio of 2 and image contrast of 0.1, and the “kite” object can be clearly distinguished in the image. Combining its tunability, ultrafast pulse duration and micron meter resolution, the all-optical-driven inverse Compton x-ray source provides unique capacities for flash radiography of dense material, and is of interest for ultrafast nuclear physics study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.