Abstract
AbstractThe IceCube project transformed a cubic kilometer of transparent natural Antarctic ice into a Cherenkov detector. It discovered PeV‐energy neutrinos originating beyond our galaxy with an energy flux that is comparable to that of GeV‐energy gamma rays and EeV‐energy cosmic rays. These neutrinos provide the only unobstructed view of the cosmic accelerators that power the highest energy radiation reaching us from the universe. The results from IceCube's first decade of operations, foremost the measurement of the diffuse neutrino flux from the universe using multiple techniques is reviewed. The multimessenger data that identified the supermassive black hole TXS 0506+056 as a source of cosmic neutrinos is subsequently reviewed and attention is drawn to accumulating indications that cosmic neutrinos are associated with gamma‐ray‐obscured active galaxies, that is, the energy in gamma rays that accompanies cosmic neutrinos emerges at MeV energies, or below. Reaching beyond 10 PeV energy, cosmic neutrinos provide a natural beam to study neutrinos themselves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.