Abstract

Abstract Particles may be accelerated in magnetized coronae via magnetic reconnections and/or plasma turbulence, leading to high-energy neutrinos and soft γ-rays. We evaluate the detectability of neutrinos from nearby bright Seyfert galaxies identified by X-ray measurements. In the disk-corona model, we find that NGC 1068 is the most promising Seyfert galaxy in the Northern sky, where IceCube is the most sensitive, and show prospects for the identification of aggregated neutrino signals from Seyfert galaxies bright in X-rays. Moreover, we demonstrate that nearby Seyfert galaxies are promising targets for the next generation of neutrino telescopes such as KM3NeT and IceCube-Gen2. For KM3NeT, Cen A can be the most promising source in the Southern sky if a significant fraction of the observed X-rays come from the corona, and it could be identified in few years of KM3NeT operation. Our results reinforce the idea that hidden cores of supermassive black holes are the dominant sources of the high-energy neutrino emission and underlines the necessity of better sensitivity to medium-energy ranges in future neutrino detectors for identifying the origin of high-energy cosmic neutrinos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.