Abstract

The recent commercial implementation of an electrospray source on a four-sector mass spectrometer has allowed the study of high-energy collisional activation of multiply charged cations. With this configuration, higher mass-to-charge ratios can be accommodated in both precursor ion selection and fragment ion detection. Good mass accuracy facilitates analysis of fragment ions and allows more reliable mechanistic correlation of these fragments. A convenient scheme was devised to permit the use of kilovolt potentials in both MS-I and MS-II, with precursors of varying charge states. Algorithms were devised to assign masses of different types of multiply charged fragment ions. Nine polypeptides were studied in the mass range 2000-5000 Da. Through this entire mass range, fragment ions were observed to be amply formed by cleavages in both the backbone and side chains, analogous to high-energy collisional activation of singly charged ions. This stands in sharp contrast to the patterns reported with low-energy, multiple collisions. Abundances of sequence ion series are influenced by the positions of basic residues. Analysis of charge distributions in fragment ions also indictes that the charges tend to be spread out across the peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call