Abstract

A high-potential supramolecular triad (TPE-AlPor ← Im-C60) composed of aluminum(III) porphyrin (AlPor), fullerene (C60), and tetraphenylethylene (TPE) has been constructed. The fullerene and tetraphenylethylene units are bound axially to opposite faces of the porphyrin plane via coordination and covalent bonds, respectively. The ground and excited-state properties of the triad and reference dyads are studied using steady-state and time-resolved spectroscopic techniques. The transient data show that photoexcitation results in charge separation from tetraphenylethylene to the excited singlet state of the porphyrin (1AlPor*), generating a high-energy (2.14 eV) charge-separated state, (TPE)•+-(AlPor)•–, in toluene. A subsequent electron migration from the AlPor–• to fullerene generates a second high-energy (1.78 eV) charge-separated state (TPE)•+-AlPor ← Im-(C60)•–. The lifetime of the charge separation is about 25 ns. The high energy stored in the form of charge-separated states along with their reasonable l...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.