Abstract

AbstractFor preparation of ZnO/CdS/Cu(In,Ga)Se2 solar cells, physical vapor deposition (PVD) was employed to deposit CdS buffer layers in ultrahigh vacuum on Se-decapped absorber surfaces, thus realizing an all ‘dry' fabrication process of the device. An 14.1% total area and 14.5% active area efficient ZnO/CdS/Cu(In,Ga)Se2 solar cell under AM1.5 conditions was achieved after annealing the as-prepared solar cells in air. Kelvin probe force microscopy (KPFM) measurements were carried out in-situ to monitor the initial growth of the CdS buffer layer on the absorber, as well as its electronic properties, in particular, the work function. It was observed that the PVD-CdS growth is initially inhibited at the absorber grain boundaries. Quantum efficiency measurements allowed us to suppose that during the initial growth stage a passivation of the grain boundaries occurs. The latter explains the higher short-circuit currents of the cells with PVD-CdS compared to their references with CdS grown by chemical bath deposition (CBD). The beneficial effect of the annealing seems to originate from a formation of a region with higher band gap than that of the absorber bulk and inverted conductivity type at the absorber surface, close to the CdS/Cu(In,Ga)Se2 interface, leading to a dramatic change in the electronic transport properties and finally, to a significant enhancement of the open-circuit voltage. Annealing of the ZnO/PVD-CdS/Cu(In,Ga)Se2 solar cells provides formation of PVDCdS/ Cu(In,Ga)Se2 interface with properties similar to that of reference samples with CBD-CdS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.