Abstract

The recent evolution of active components yielded brilliant progresses for organic solar cells (OSCs), yet the mechanism is needed to be clearly understood. In this work, two electron acceptors, a linear SN6-2Br and a V-shaped BTP-2Br, are developed with nitrogen atoms introduced to replace the traditional sp3-hybridized carbon in the fused ring. BTP-2Br possesses an electron-deficient central core, which exhibits slightly blue-shifted absorption as well as deepened HOMO-level compared with SN6-2Br. The corresponding photovoltaic performance from V-shaped BTP-2Br based devices exhibit superior performance especially in short-circuit current (Jsc), despite an enhanced absorption and charge carrier mobilities for SN6-2Br. The primary reason for the higher Jsc from BTP-2Br is faster exciton diffusion and dissociation in blends, than those of SN6-2Br. As a result, PBDB-TF:BTP-2Br based devices achieve a power conversion efficiency (PCE) of 13.84% with an voltage-loss of only 0.46 V, which is one of the lowest values ever reported. Moreover, we fabricated semitransparent OSCs that exhibit an excellent PCE of 9.62% with average visible transparency of 20.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.