Abstract

The III-V compound solar cells represented by GaAs solar cells have contributed as space and concentrator solar cells and are important as sub-cells for multi-junction solar cells. This chapter reviews progress in III-V compound single-junction solar cells such as GaAs, InP, AlGaAs and InGaP cells. Especially, GaAs solar cells have shown 29.1% under 1-sun, highest ever reported for single-junction solar cells. In addition, analytical results for non-radiative recombination and resistance losses in III-V compound solar cells are shown by considering fundamentals for major losses in III-V compound materials and solar cells. Because the limiting efficiency of single-junction solar cells is 30-32%, multi-junction junction solar cells have been developed and InGaP/GaAs based 3-junction solar cells are widely used in space. Recently, highest efficiencies of 39.1% under 1-sun and 47.2% under concentration have been demonstrated with 6-junction solar cells. This chapter also reviews progress in III-V compound multi-junction solar cells and key issues for realizing high-efficiency multi-junction cells.

Highlights

  • The III-V compound solar cells represented by GaAs solar cells have advantages such as high-efficiency potential, possibility of thin-films, good temperature coefficient, radiation-resistance and potential of multi-junction application compared crystalline Si solar cells

  • The III-V compound solar cells have contributed as space and concentrator solar cells and are important as sub-cells for multi-junction solar cells

  • The III-V compound solar cells have contributed as space and concentrator solar cells and are expected as creation of new markets such as large-scale electric power systems and solar cell powered electric vehicles

Read more

Summary

Introduction

The III-V compound solar cells represented by GaAs solar cells have advantages such as high-efficiency potential, possibility of thin-films, good temperature coefficient, radiation-resistance and potential of multi-junction application compared crystalline Si solar cells. As a result of research and development, high-efficiencies [1, 2] have been demonstrated with III-V compound single-junction solar cells: 29.1% for GaAs, 24.2% for InP, 16.6% for AlGaAs, and 22% for InGaP solar cells. Open-circuit voltage drop compared to band gap energy (Eg/q – Voc) and non-radiative voltage loss (Voc,nrad) in GaAs, InP, AlGaAs and InGaP solar cells as a function of ERE.

Future prospects
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.