Abstract

Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion (PBF) process. In this study, a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm × 2000 mm. The heat-affected zone (HAZ) temperature field has been controlled by adjusting the scanning speed dynamically. Simultaneously, the relationship among spot size, HAZ temperature, and part performance has been established. The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85 ℃ to 17.41 ℃. Thus, the consistency of the sintering performance of the produced large component has been improved. Based on the controllable temperature field, a dynamically adjusting strategy for laser spot size was proposed, by which the fabrication efficiency was improved up to 65.38%. The current research results were of great significance to the further industrial applications of large-scale PBF equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.