Abstract

This study presents a novel soft-switching bidirectional dc-dc converter with a coupled inductor. Transformer-based circuit topologies are commonly employed in conventional bidirectional converters and soft-switching techniques, including zero-voltage switching (ZVS) or zero-current switching (ZCS), are frequently applied to mitigate switching losses. Unfortunately, the use of more than four switches and several diodes in these transformer-based schemes increase production costs and reduce conversion efficiency. This work presents a coupled-inductor bidirectional converter scheme that utilises four power switches to achieve the goal of bidirectional current control. The high step-up and step-down ratios enable a battery module current with a low-voltage level to be injected into a high-voltage dc bus for subsequent utilisation. Experimental results based on a 24 V/200 V 800 W prototype are provided to verify the effectiveness of the proposed bidirectional converter. Since the voltage clamping, synchronous rectification and soft-switching techniques are utilised in the proposed circuit topology and the corresponding device specifications are adequately fulfilled, the proposed converter can provide highly efficient bidirectional power conversion in a wide range on the low-voltage side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call