Abstract

ABSTRACT We report the analysis and application of uncooled, directly-modulated high-speed DFB lasers with emphasis on their analogue transmission performance. Fibre-optic links employing such lasers are shown to meet the most stringent requirements of analogue systems at both high carrier frequencies and high temperatures. Spurious-free dynamic ranges (SFDR) exceeding 100dB Hz 2/3 and 90dB Hz 2/3 and input third-order intercept points (IIP3) above 20dBm and 18dBm are reported for carrier frequencies up to 20GHz at 25°C and up to 10GHz at 85°C, respectively. The error-vector magnitude (EVM) for a 256-QAM modulated signal transmitted over 15km of SMF remains below 1.9% for carrier frequencies of both 2GHz and 5GHz for all measured temperatures. The link performance is assessed by using 3GPP W-CDMA, IEEE 802.11a and IEEE 802.11b signals. In all cases the EVM remains within the standard specification, for fibre-optic link lengths of up to 10km and laser operating temperatures of up to 70°C. Finally, an IEEE 802.11b WLAN demonstrator is presented, allowing antenna remoting over up to 1000m of 62.5/125 m MMF. Keywords: analogue modulation, distributed feedback laser, spurious-free dynamic range, error-vector magnitude, antenna remoting, 3GPP W-CDMA, WLAN, IEEE 802.11a, IEEE 802.11b.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.