Abstract

We consider the problem of determining the structure of high-dimensional data, without prior knowledge of the number of clusters. Data are represented by a finite mixture model based on the generalized Dirichlet distribution. The generalized Dirichlet distribution has a more general covariance structure than the Dirichlet distribution and offers high flexibility and ease of use for the approximation of both symmetric and asymmetric distributions. This makes the generalized Dirichlet distribution more practical and useful. An important problem in mixture modeling is the determination of the number of clusters. Indeed, a mixture with too many or too few components may not be appropriate to approximate the true model. Here, we consider the application of the minimum message length (MML) principle to determine the number of clusters. The MML is derived so as to choose the number of clusters in the mixture model which best describes the data. A comparison with other selection criteria is performed. The validation involves synthetic data, real data clustering, and two interesting real applications: classification of web pages, and texture database summarization for efficient retrieval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.