Abstract

<p style='text-indent:20px;'>Variable selection and parameter estimation are fundamental and important problems in high dimensional data analysis. In this paper, we employ the hard thresholding regularization method [<xref ref-type="bibr" rid="b1">1</xref>] to handle these issues under the framework of high-dimensional and sparse linear regression model. Theoretically, we establish a sharp non-asymptotic estimation error for the global solution and further show that the support of the global solution coincides with the target support with high probability. Motivated by the KKT condition, we propose a primal dual active set algorithm (PDAS) to solve the minimization problem, and show that the proposed PDAS algorithm is essentially a generalized Newton method, which guarantees that the proposed PDAS algorithm will converge fast if a good initial value is provided. Furthermore, we propose a sequential version of the PDAS algorithm (SPDAS) with a warm-start strategy to choose the initial value adaptively. The most significant advantage of the proposed procedure is its fast calculation speed. Extensive numerical studies demonstrate that the proposed method performs well on variable selection and estimation accuracy. It has favorable exhibition over the existing methods in terms of computational speed. As an illustration, we apply the proposed method to a breast cancer gene expression data set.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.