Abstract
Influence diagnosis is important since presence of influential observations could lead to distorted analysis and misleading interpretations. For high-dimensional data, it is particularly so, as the increased dimensionality and complexity may amplify both the chance of an observation being influential, and its potential impact on the analysis. In this article, we propose a novel high-dimensional influence measure for regressions with the number of predictors far exceeding the sample size. Our proposal can be viewed as a high-dimensional counterpart to the classical Cook's distance. However, whereas the Cook's distance quantifies the individual observation's influence on the least squares regression coefficient estimate, our new diagnosis measure captures the influence on the marginal correlations, which in turn exerts serious influence on downstream analysis including coefficient estimation, variable selection and screening. Moreover, we establish the asymptotic distribution of the proposed influence measure by letting the predictor dimension go to infinity. Availability of this asymptotic distribution leads to a principled rule to determine the critical value for influential observation detection. Both simulations and real data analysis demonstrate usefulness of the new influence diagnosis measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.