Abstract
AbstractCovariance matrix estimation plays an important role in statistical analysis in many fields, including (but not limited to) portfolio allocation and risk management in finance, graphical modeling, and clustering for genes discovery in bioinformatics, Kalman filtering and factor analysis in economics. In this paper, we give a selective review of covariance and precision matrix estimation when the matrix dimension can be diverging with, or even larger than the sample size. Two broad categories of regularization methods are presented. The first category exploits an assumed structure of the covariance or precision matrix for consistent estimation. The second category shrinks the eigenvalues of a sample covariance matrix, knowing from random matrix theory that such eigenvalues are biased from the population counterparts when the matrix dimension grows at the same rate as the sample size.This article is categorized under: Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Nonparametric Methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.