Abstract

AbstractThe covariance matrix is a fundamental quantity that helps us understand the nature of relationships among variables in a multivariate data set. Estimating the covariance matrix can be challenging in modern applications where the number of variables is often larger than the number of samples. In this paper, we review methods which tackle this challenge by inducing sparsity in the Cholesky parameter of the inverse covariance matrix.This article is categorized under: Algorithms and Computational Methods > Numerical Methods Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.