Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive procedure where a weak electrical current (260 μA to 2 mA) is applied across the scalp to modulate brain function. tDCS has been applied for therapeutic purposes (e.g., addiction, depression, mood and sleep disorders) as well as cognitive performance enhancement (e.g., memory consolidation, motor learning, language recall). Despite safety and cost advantages, the developments of tDCS therapies have been restricted by spatial targeting concerns using existing two-channel systems. We have developed novel technology for High-Density tDCS (HD-tDCS) that improves spatial focality. Our hardware interface integrates a multichannel stimulating guide with existing two channel tDCS stimulators, and can be configured to target specific brain regions using computational models of current flow and multichannel array accessories. The hardware interface provides real time stimulation quality and safety feedback, and is designed to be MRI and TMS compatible. An electrical “tickle” feature enables skin pre-conditioning to minimize sensation. The full system includes the hardware interface, cable assemblies, head gear, tDCS electrodes, tDCS gel, and electrode adaptors. The head gear allows fixing the electrode adaptors over cortical targets using conventional EEG electrode coordinates. The electrode adaptors “fin” design, tDCS gel composition, and electrode shape are optimized to reduce sensation during direct current stimulation with 2 mA for up to 22 minutes. A five electrode system (4×1-C1), for implementing optimally focal “4×1 ring configuration” protocols, and an 8 electrode system (4×4-S1), that can be configured for “4×4 cortical strip stimulation”, are available. The entire system is robust, intuitive, and ultimately adaptable for home use. Our HD-tDCS system allows non-invasive, safe, and targeted modulation of selected cortical structures for electrotherapies that are individualized as well as optimized for a range of therapeutic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.