Abstract

Calibration of optical metrology stereophotogrammetric systems is vital to obtain accurate and precise three-dimensional (3-D) measurements. Despite its importance, the work pipeline of intrinsic and extrinsic camera calibration still remains manually laborious with high technical complexity. The use of a multilayer perceptron neural network to calibrate an optical metrology stereophotogrammetric system utilizing a statistical band-limited pattern projection system is demonstrated. Highly accurate, highly precise, and highly dense 3-D surface reconstructions are obtained solely from homologous corresponding pairs without the need for intrinsic and extrinsic camera calibration. Measurement performance in the typical optical metrology sense, where 3-D measurements were evaluated with respect to length and surface gauges, is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.