Abstract
We discuss by analytic means the theory of the high-density limit of the unpolarized two-dimensional electron liquid in the presence of Rashba or Dresselhaus spin-orbit coupling. A generalization of the ring-diagram expansion is performed. We find that in this regime the spin-orbit coupling leads to small changes of the exchange and correlation energy contributions, while modifying also, via repopulation of the momentum states, the noninteracting energy. As a result, the leading corrections to the chirality and total energy of the system stem from the Hartree-Fock contributions. The final results are found to be vanishing to lowest order in the spin-orbit coupling, in agreement with a general property valid to every order in the electron-electron interaction. We also show that recent quantum Monte Carlo data in the presence of Rashba spin-orbit coupling are well understood by neglecting corrections to the exchange-correlation energy, even at low density values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.