Abstract
Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput marker technology for the construction of high-density genetic linkage maps. Eucalyptus grandis and Eucalyptus urophylla are commonly used to produce fast-growing, disease tolerant hybrids for clonal eucalypt plantations in tropical and subtropical regions. We analysed 7,680 DArT markers in an F2 pseudo-backcross mapping pedigree based on an F1 hybrid clone of E. grandis and E. urophylla. A total of 2,440 markers (31.7%) were polymorphic and could be placed in linkage maps of the F1 hybrid and two pure-species backcross parents. An integrated genetic linkage map was constructed for the pedigree resulting in 11 linkage groups (n = 11) with 2,290 high-confidence (LOD ≥ 3.0) markers and a total map length of 1,107.6 cM. DNA sequence analysis of the mapped DArT marker fragments revealed that 43% were located in protein coding regions and 90% could be placed in the recently completed draft genome assembly of E. grandis. Together with the anchored genomic sequence information, this linkage map will allow detailed genetic dissection of quantitative traits and hybrid fitness characters segregating in the F2 progeny and will facilitate the development of markers for molecular breeding in Eucalyptus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.