Abstract

BackgroundCold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map.ResultsWe constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected.ConclusionsHigh-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.

Highlights

  • Cold hardiness is an important agronomic trait and can significantly affect grape production and quality

  • Cane cold hardiness analysis Grapevine cane samples from 2016, 2017, and 2018 of the two parents and 181 individuals were identified by differential thermal analysis

  • Lethal temperature of phloem (LTP) and lethal temperature of xylem (LTX) during these 3 years were named as PH16, XY16, PH17, XY17, PH18, and XY18 (Additional file 1: Data S1)

Read more

Summary

Introduction

Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. The annual lowest temperature of most grapeproducing regions in China below − 15 °C, it is necessary for grapevine to be buried with soil to resist the cold environment. This strategy greatly increases management costs and can lead to the damage to the grapevine and soil structure, causing dust storms and soil erosion. Marker-assisted selection (MAS) was widely used for the research of grape breeding based on genetic linkage map construction and QTL mapping. This strategy will make grapevine breeding more efficient and precise [3,4,5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call