Abstract

In Al x Ga 1 m x As/AlAs quantum wire (QWR) structures, the lower lying indirect exciton (IE) photoluminescence (PL) peak shows remarkable blue-shift under intense light-excitation contrary to the higher lying direct exciton (DE) PL band with very small blue-shift, although the two kinds of exciton states consist of the common hole state. In time-resolved PL spectra in the type-II QWR of x = 0.4, the DE PL band appears at an earlier stage without peak-shift and the excitons relax to the IE state making the IE PL peak dominant with time evolution. The blue-shift of the IE peak in a quasi equilibrium after the relaxation seriously depends on the excitation density. The origin of the blue-shift is explained in terms of many-body effects including band-bending effect due to the electric field induced by spatially separated electrons and holes in the QWR structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call