Abstract

The cubature Kalman filter (CKF), which is based on the third degree spherical–radial cubature rule, is numerically more stable than the unscented Kalman filter (UKF) but less accurate than the Gauss–Hermite quadrature filter (GHQF). To improve the performance of the CKF, a new class of CKFs with arbitrary degrees of accuracy in computing the spherical and radial integrals is proposed. The third-degree CKF is a special case of the class. The high-degree CKFs of the class can achieve the accuracy and stability performances close to those of the GHQF but at lower computational cost. A numerical integration problem and a target tracking problem are utilized to demonstrate the necessity of using the high-degree cubature rules to improve the performance. The target tracking simulation shows that the fifth-degree CKF can achieve higher accuracy than the extended Kalman filter, the UKF, the third-degree CKF, and the particle filter, and is computationally much more efficient than the GHQF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call