Abstract

Obesity and related metabolic diseases show clear sex-related differences. The growing burden of these diseases calls for better understanding of the age- and sex-related metabolic consequences. High-throughput lipidomic analyses of population-based cohorts offer an opportunity to identify disease-risk–associated biomarkers and to improve our understanding of lipid metabolism and biology at a population level. Here, we comprehensively examined the relationship between lipid classes/subclasses and molecular species with age, sex, and body mass index (BMI). Furthermore, we evaluated sex specificity in the association of the plasma lipidome with age and BMI. Some 747 targeted lipid measures, representing 706 molecular lipid species across 36 classes/subclasses, were measured using a high-performance liquid chromatography coupled mass spectrometer on a total of 10,339 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), with 563 lipid species being validated externally on 4,207 participants of the Busselton Health Study (BHS). Heat maps were constructed to visualise the relative differences in lipidomic profile between men and women. Multivariable linear regression analyses, including sex-interaction terms, were performed to assess the associations of lipid species with cardiometabolic phenotypes. Associations with age and sex were found for 472 (66.9%) and 583 (82.6%) lipid species, respectively. We further demonstrated that age-associated lipidomic fingerprints differed by sex. Specific classes of ether-phospholipids and lysophospholipids (calculated as the sum composition of the species within the class) were inversely associated with age in men only. In analyses with women alone, higher triacylglycerol and lower lysoalkylphosphatidylcholine species were observed among postmenopausal women compared with premenopausal women. We also identified sex-specific associations of lipid species with obesity. Lysophospholipids were negatively associated with BMI in both sexes (with a larger effect size in men), whilst acylcarnitine species showed opposing associations based on sex (positive association in women and negative association in men). Finally, by utilising specific lipid ratios as a proxy for enzymatic activity, we identified stearoyl CoA desaturase (SCD-1), fatty acid desaturase 3 (FADS3), and plasmanylethanolamine Δ1-desaturase activities, as well as the sphingolipid metabolic pathway, as constituent perturbations of cardiometabolic phenotypes. Our analyses elucidate the effect of age and sex on lipid metabolism by offering a comprehensive view of the lipidomic profiles associated with common cardiometabolic risk factors. These findings have implications for age- and sex-dependent lipid metabolism in health and disease and suggest the need for sex stratification during lipid biomarker discovery, establishing biological reference intervals for assessment of disease risk.

Highlights

  • Cardiometabolic conditions including obesity, type 2 diabetes (T2D), and cardiovascular disease (CVD) are tightly associated with dysregulation of lipid metabolism [1,2,3], which contributes directly or indirectly to adverse metabolic outcomes

  • We examined the associations between the plasma lipidome and common cardiometabolic risk factors including age, sex, and body mass index (BMI)

  • We demonstrated complex associations of the plasma lipidome with age, sex, and BMI, as well as with waist circumference (WC) and waist/hip ratio (WHR) and smoking, and have mined these data to identify lipid metabolic pathways

Read more

Summary

Introduction

Cardiometabolic conditions including obesity, type 2 diabetes (T2D), and cardiovascular disease (CVD) are tightly associated with dysregulation of lipid metabolism [1,2,3], which contributes directly or indirectly to adverse metabolic outcomes. Triglycerides, and low-density lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C) are used as measures of metabolic health status and disease risk [4,5,6]. Such clinical lipid measures do not adequately explain the complex pathophysiology of metabolic disease, nor do they suffice as diagnostic, prognostic, or predictive biomarkers. In a cohort of 1,000 participants, Weir and colleagues utilised liquid chromatography tandem mass-spectrometry (LC-MS/MS)–based targeted lipidomics and profiled major lipid classes (23) and species (312) in human plasma, identifying lipid classes and subclasses associated with cardiometabolic risk factors [15]. Advances in high-throughput LC-MS/MS–based lipidomic profiling allow the measurement of many hundreds of biologically relevant circulating molecular lipid species, providing a more complete picture of the lipidome [16, 20]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.