Abstract

High compactability is desired for asphalt mixtures to ensure adequate field density and, therefore, the overall quality of asphalt pavements. However, compactability is typically not considered in standard mix design procedures, and existing methods for improving compactability are largely empirical. This paper proposes a mix design framework that considers the compactability of mixtures, anchored by a rational method to adjust aggregate gradation. The method is developed based on the binary aggregate packing model. The proposed mix design is applied to modify four traditional Superpave mixtures into high-compactability mixtures, to demonstrate the concept. The proposed method is compared with two empirical methods used to adjust aggregate gradation: the maximum density line (MDL) and the Bailey method. The results show that the proposed method provides a theoretical explanation of the two empirical methods and reveals their limitations. Mechanical properties related to rutting resistance, low-temperature cracking, and structural capacity of the mixtures are checked by laboratory performance tests to validate the high-compactability mix designs. The results show that, due to their denser aggregate packing, the high-compactability mixtures outperform the traditional Superpave mixtures. Therefore, the proposed high-compactability mix design framework provides a rational and practical approach to improve the field density and the overall quality of asphalt pavements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.