Abstract

We demonstrated high-performance Ge nanowire (NWs) anodes for rechargeable lithium-ion batteries with high-capacity and high coulombic efficiency. The NWs were prepared using a simple chemical vapor deposition (CVD) method, which is favorable for the mass production of electrodes. The unstable oxides of Ge deteriorate the electrochemical characteristics of the batteries made from Ge-based anodes. To resolve the issue of the oxides and enhance the electrochemical performance, the oxides of the NWs were removed efficiently by a simple wet chemical etching method via a 10% HCl (aq) treatment. Transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental mapping verified the removal of oxides. Charge and discharge capacity of the pristine NWs were 833.803 mAhg−1 and 650.63 mAhg−1 at first cycle. In comparison, the charge and discharge capacities after oxide removal were 1064.1 mAhg−1 and 905.6 mAhg−1 under the same conditions. The discharge capacity and coulombic efficiency of the oxide-removed NWs were 39.2% and 7.1% higher than those achieved without oxide removal. The coulombic efficiency of the oxide-removed NWs was higher than that of the pristine NWs (7.1% increase). The NWs were stable over 25 cycles at different C-rates. This approach provides an efficient and practical way to resolve the oxide issue of Ge-based anodes, and high-performance lithium-ion batteries were demonstrated using the oxide-removed NW anodes. This study presents an advance towards the realization of the commercial batteries based on Ge as an active electrode material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call