Abstract

The introduction of 5G mobile networks, bringing multi-Gbit/s user data rates and reduced latency, opens new opportunities for media generation, transport and distribution, as well as for new immersive media applications. The expected use of millimeter-wave carriers and the strong network densification resulting from a much reduced cell size—which enable the expected performance of 5G—pose major challenges to the fronthaul network. Space division multiplexing (SDM) in the optical domain has been suggested for ultra-high capacity fronthaul networks that naturally support different classes of fronthaul traffic and further enable the use of analog radio-over-fiber and advanced technologies, such as optical beamforming. This paper discusses the introduction of SDM with multi-core fibers in the fronthaul network as suggested by the blueSPACE project, regarding both digitized and analog radio-over-fiber fronthaul transport as well as the introduction of optical beamforming for high-capacity millimeter-wave radio access. Analog and digitized radio-over-fiber are discussed in a scenario featuring parallel fronthaul for different radio access technologies, showcasing their differences and potential when combined with SDM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call