Abstract

High barrier Schottky contact has been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 350 μm thick substrate 8° off-cut towards the [1120] direction. The 4H-SiC epitaxial wafer was diced into 10 x 10 mm 2 samples. The metal-semiconductor junctions were fabricated by photolithography and dc sputtering with ruthenium (Ru). The junction properties were characterized through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Detectors were characterized by alpha spectroscopy measurements in terms of energy resolution and charge collection efficiency using a 0.1 μCi 241 Am radiation source. It was found that detectors fabricated from high work function rare transition metal Ru demonstrated very low leakage current and significant improvement of detector performance. Defect characterization of the epitaxial layers was conducted by deep level transient spectroscopy (DLTS) to thoroughly investigate the defect levels in the active region. The presence of a new defect level induced by this rare transition metal-semiconductor interface has been identified and characterized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call