Abstract
Recently, lumped Mach-Zehnder Modulators (MZMs) have received renewed attention due to their potential for low power consumption and compact size. However, the practicality of lumped MZMs with conventional lumped electrodes (C−LEs) is limited by their lower electro−optical (EO) bandwidth. The reduction in EO bandwidth results from the inherent trade−off between EO bandwidth and half−wave voltage length product (VπL) within the C−LE architecture. This paper proposes a thin−film lithium niobate (TFLN)−based lumped MZM with capacitively−loaded lumped electrodes (CL−LEs). The purely linear EO effect of the LN eliminates the parasitic capacitance in the doped PN junction and enhances the EO bandwidth. Furthermore, the CL−LE structure can break the limitation between EO bandwidth and VπL inherent in the C−LE design. Simulations show the proposed device achieves a high EO bandwidth of 32.4 GHz and a low VπL of 1.15 V·cm. Due to the reduced capacitance and lower VπL, the power consumption of the device is as low as 0.1 pJ/bit. Simulation results indicate that the open−eye diagrams are achieved at 64 Gb/s for 1.5 mm TFLN lumped MZM, with an ER of 2.97 dB. Consequently, the proposed device architecture substantially enhances the performance of lumped MZMs, showing promise for application in short−reach optical interconnects within data centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.