Abstract
This paper describes a process to fabricate three-dimensional multilevel high-aspect-ratio microstructures (HARMs) for magnetoelectronic devices using aligned x-ray lithography in conjunction with electrodeposition. In this process, x-ray masks were constructed on a seed layer coated polyimide membrane with ultraviolet (UV) patterned and electrodeposited gold absorbers. The optically transparent polyimide allows one to align and print large areas (>4 inch in diameter) with high alignment accuracies. Patterns that contain 5-10 μm diameter posts and 7-10 μm wide lines were printed to 100-120 μm polymethyl methacrylate (PMMA) resist prepared on silicon wafers using x-ray lithography. Nickel-iron was electroplated to form ferromagnetic HARMs, while electroplated gold formed circuits. The composition profile measured with an electron probe x-ray microanalyzer (EPMA) suggested that iron content increases as NiFe plating proceeds inside the recess. The electrodeposition resulted in well-defined NiFe structures with aspect-ratios up to 20:1, smooth sidewalls and top surfaces. To isolate the magnetic structures and circuits, both wet chemical etching and sputter etching were explored to remove seed layer, and the latter yielded complete removal without noticeable damage to the features. A complete aligned x-ray exposure and electrodeposition protocol applicable to universal multilevel microstructures was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.