Abstract
A high-amylose rice with 64.8% amylose content (AC) was developed by transgenic inhibition of two isoforms of starch branching enzyme (SBE), SBEI and SBEIIb, in an indica rice cultivar. The expression of SBEI and SBEIIb was completely inhibited in the transgenic line, whereas the expression of granule-bound starch synthase was normal. Compared with wild-type rice, drastic reductions in both SBEs in the transgenic rice increased apparent AC in flour from 27.2% to 64.8%, resistant starch (RS) content from 0% to 14.6% and total dietary fibre (TDF) from 6.8% to 15.2%. Elevated AC increased the proportion of long unit chains in amylopectin and increased onset gelatinization temperature and resistance to alkaline digestion; however, kernel weight was decreased. A rat feeding trial indicated that consumption of high-amylose rice decreased body weight gain significantly (P < 0.01); increased faecal mass, faecal moisture and short-chain fatty acids; and lowered the faecal pH. An acute oral rice tolerance test revealed that the high-amylose rice had a positive effect on lowering the blood glucose response in diabetic Zucker fatty rats. This novel rice with its high AC, RS and TDF offers potential benefits for its use in foods and in industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.