Abstract
Voltage-clamp fluorometry was performed with a cysteine-deprived mutant of rat organic cation transporter 1 (rOCT1) in which Phe483 in transmembrane alpha-helix (TMH) 11 close to the extracellular surface was replaced by cysteine and labeled with tetramethylrhodamine-6-maleimide. Potential-dependent fluorescence changes were observed that were sensitive to presence of substrates choline, tetraethylammonium (TEA), and 1-methyl-4-phenylpyridinium (MPP) and of the nontransported inhibitor tetrabutylammonium (TBuA). Using potential-dependent fluorescence changes as readout, one high-affinity binding site per substrate and two high-affinity binding sites for TBuA were identified in addition to the previously described single interaction sites. In a structure model of rOCT1 with an inward open cleft that was derived from a known crystal structure of lacY permease, Phe483 is close to Trp147 in TMH 2. In contrast, in a model with an outward open cleft these amino acids are far apart. After replacement of Phe483 or Trp147 by cysteine or serine, high-affinity binding of TBuA leads to inhibition of MPP or TEA uptake, whereas it has no effect on cation uptake by wild-type rOCT1. Coexisting high-affinity cation binding sites in organic cation transporters may collect low concentration xenobiotics and drugs; however, translocation including transitions between outward- and inward-oriented conformations may only be induced when a low-affinity cation binding site is loaded. We propose that cations bound to high-affinity sites may be translocated together with cations bound to low-affinity sites or that they may block the translocation mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.