Abstract
Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center- of-mass energy from the simulation by assuming energy balance. We compare these quantities with the predictions of various PN approximants (adiabatic Taylor and Pade models; non-adiabatic effective-one-body (EOB) models). We find that Pade summation of the energy flux does not accelerate the convergence of the flux series; nevertheless, the Pade flux is markedly closer to the numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Pade models overestimate the increase in flux and frequency derivative close to merger, whereas EOB models reproduce more faithfully the shape of and are closer to the numerical flux, frequency derivative and derivative of energy. We also compare the GW phase of the numerical simulation with Pade and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that the phase difference accumulated until Mω = 0.1 is -0.12 radians for Pade approximants, and 0.50 (0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters within the EOB models to minimize the phase difference, and confirm the presence of degeneracies among these parameters. By tuning the pseudo 4PN order coefficients in the radial potential or in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase difference at Mω = 0.1 can be reduced—if desired—to much less than the estimated numerical phase error (0.02 radians).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.