Abstract

Kidney stone disease, or nephrolithiasis, is a common ailment. Among the different risk factors usually associated with nephrolithiasis are dehydration, metabolic defects (especially with regard to calcium and oxalate). The presence of a mineral deposit at the surface of the renal papilla (termed Randall's plaque) has all been recently underlined. Of note, Randall's plaque is made of the calcium phosphate, carbapatite, and serves as a nucleus for kidney stone formation. The process by which apatite nanocrystals nucleate and form Randall's plaque remains unclear. This paper deals with the possible relationship between trace elements and the formation of this mineral. The investigation has been performed on a set of Randall's plaques, extracted from human kidney stones, through μ-X-ray diffraction and μ-X-ray fluorescence analyses in order to determine the chemical composition of the plaque as well as the nature and the amount of trace elements. Our data provide evidence that Zn levels are dramatically increased in carbapatite of RP by comparison to carbapatite in kidney stones, suggesting that calcified deposits within the medullar interstitium are a pathological process involving a tissue reaction. Further studies, perhaps including the investigation of biomarkers for inflammation, are necessary for clarifying the role of Zn in Randall's plaque formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.