Abstract

Ultrafine-grained structures formed dynamically through simple compression at warm deformation temperatures were investigated in a 0.15%C- 0.4%Si-1.5%Mn steel. The effects of strain, strain rate and deformation temperature on the microstructural evolution were examined using an isothermal plane strain compression technique with a pair of anvils. The maximum strain was 4, the deformation temperature was below the AC1 temperature, and the Zener-Hollomon parameter (Z) ranged between 1012 s-1 and 1016 s-1. Ultrafine ferrite grains surrounded by high angle boundaries are generated by simple compression when the strain exceeded a critical value. The number of newly generated ultrafine grains increased with the strain; however, the average sizes were found to be independent of strain. The grain size, `d`, was found to depend on Z parameter. An equation, d (μm) =102.07Z-0.16, was found to satisfy the experimentally obtained data. This study demonstrates the possibility of obtaining ultrafine ferrite through multi-pass caliber rolling as a high Z- large strain deformation technique for producing bulk engineering components. It was also noted that the empirical relation established based on single pass compression tests is valid for multi-pass caliber rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.