Abstract

Energy crisis and global climate change have driven an increased effort toward biofuel synthesis from renewable feedstocks. Herein, purple nonsulfur photosynthetic bacterium (PNSB) of Rhodobacter capsulatus was explored as a platform for high-titer production of a terpene-based advanced biofuel-bisabolene. A multilevel engineering strategy such as promoter screening, improving the NADPH availability, strengthening the precursor supply, suppressing the side pathways, and introducing a heterologous mevalonate pathway, was used to improve the bisabolene titer in R. capsulatus. The above strategies enabled a 35-fold higher titer of bisabolene than that of the starting strain, reaching 1089.7 mg/L from glucose in a shake flask. The engineered strain produced 9.8 g/L bisabolene with a yield of >0.196 g/g-glucose under the two-phase fed-batch fermentation, which corresponds to >78% of theoretical maximum. Taken together, our work represents one of the pioneering studies to demonstrate PNSB as a promising platform for terpene-based advanced biofuel production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call