Abstract

While groundwater constitutes a crucial resource in many crystalline-rock regions worldwide, well-yield conditions are highly variable and barely understood. Nevertheless, it is well known that fault zones may have the capacity to ensure sustainable yield in crystalline media, but there are only a few and disparate examples in the literature that describe high-yield conditions related to fault zones in crystalline rock basements. By investigating structural and hydraulic properties of remarkable yielding sites identified in the Armorican Massif, western France, this study discusses the main factors that may explain such exceptional hydrogeological properties. Twenty-three sites, identified through analysis of databases available for the region, are investigated. Results show that: (1) the highly transmissive fractures are related to fault zones which ensure the main water inflow in the pumped wells; (2) the probability of intersecting such transmissive fault zones does not vary significantly with depth, at least within the range investigated in this study (0–200 m); and (3) high yield is mainly controlled by the structural features of the fault zones, in particular the fault dip and the presence of a connected storage reservoir. Conceptual models that summarize the hydrological properties of high-yield groundwater resources related to fault zones in crystalline basement are shown and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.