Abstract

The use of carbon materials in porous electrodes has impressive advantages. However, precisely tailoring the multilevel pore structure of carbon electrodes remains an unsolved challenge. Here, we report a highly efficient site-selective growth strategy to synthesize colloidal carbon rings by templating patchy droplets. Carbon rings are used for the direct fabrication of self-standing porous electrodes with hierarchical pores for lithium-oxygen batteries (LOBs). In situ atomic force microscopy reveals that during discharge the discharge products densely nucleate and grow on carbon rings, demonstrating that such rings are a very potential electrode material in LOBs. The hollow carbon ring electrode (HCRE) possesses micrometer-scale channels formed by random packing of rings and nanochannels consisting of ring-shaped hollow cavities connected by nanosized pores in the wall. Both channels contribute to ion transportation and gas diffusion, but the storage of the discharge products mainly lies in micrometer-scale channels, leading to a high discharge capacity of LOBs (20 658 mAh/g). Our work paves a new way to construct hierarchically porous electrodes for application in electrocatalysis and electrochemical energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call