Abstract

Metal-organic frameworks (MOFs) are excellent candidates for water harvesting from desert air. MOF-303 (Al(OH)(PZDC), where PZDC is 1-H-pyrazole-3,5-dicarboxylate), a robust and water-stable MOF, is a particularly promising water-harvesting sorbent that can take up water at low relative humidity and release it under mild heating. Accordingly, development of a facile, high-yield synthesis method for its production at scale is highly desirable. Here we report detailed protocols for the green, water-based preparation of MOF-303 on both gram and kilogram scales. Specifically, four synthetic methods (solvothermal, reflux, vessel and microwave), involving different equipment requirements, are presented to guarantee general accessibility. Typically, the solvothermal method takes ~24 h to synthesize MOF-303, while the reflux and vessel methods can reduce the time to 4-8 h. With the microwave-assisted method, the reaction time can be further reduced to just 5 min. In addition, we provide guidance on the characterization of MOF-303, as well as water-harvesting MOFs in general, to ensure high quality of the product in terms of its purity, crystallinity, porosity and water uptake. Furthermore, to address the need for future commercialization of this material, we demonstrate that our protocol can be employed to produce 3.5 kg per batch with a yield of 91%. MOF-303 synthesized at this large scale shows similar crystallinity and water uptake capacity compared to the respective material produced at a small scale. Our synthetic procedure is green and water-based, and can produce the MOF within hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.