Abstract

Large yield and low temperature growth of nanostructures are key requirements for fulfilling the demand of large scale applications of nanomaterials. Here, we report a highly efficient chemical method to synthesize high quality hexagonal ZnO nanoparticle and nanorods utilizing the low temperature oxidation of metallic zinc powder in the presence of an appropriate catalyst. This one-step method has advantages such as low temperature (90 degrees C) and atmospheric pressure synthesis and a high yield (> 90%). Microstructure and optical properties of the as-synthesized ZnO nanoparticles are found to be identical or better than those of the commercial ZnO nanopower (Sigma-Aldrich). In particular, in comparison to the commercial nanopowder the as-grown ZnO nanorods and nanoparticles exhibit stronger UV absorption at 376 nm and intense UV photoluminescence emission at -382 nm, with negligible defect emission band. This method is suitable for large-scale production of nanosized ZnO and could be extended for the synthesis of other metal oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.