Abstract

Transforming atmospheric water vapor into liquid form can be a way to supply water to arid regions for uses such as drinking water, thermal management, and hydrogen generation. Many current methods rely on solid sorbents that cycle between capture and release at slow rates. We envision a radically different approach where water is transformed and directly captured into a liquid salt solution that is suitable for subsequent distillation or other processing using existing methods. In contrast to other methods utilizing hydrogels as sorbents, we do not store water within hydrogels-we use them as a transport medium. Inspired by nature, we capture atmospheric water through a hydrogel membrane "skin" at an extraordinarily high rate of 5.50 kgm[Formula: see text]d[Formula: see text] at a low humidity of 35%. and up to 16.9 kgm[Formula: see text]d[Formula: see text] at higher humidities. For a drinking-water application, calculated performance of a hypothetical one-square-meter device shows that water could be supplied to two to three people in arid environments. This work is a significant step toward providing new resources and possibilities to water-scarce regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.